Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips.

نویسندگان

  • Y Liu
  • J C Fanguy
  • J M Bledsoe
  • C S Henry
چکیده

Poly(dimethylsiloxane) (PDMS) capillary electrophoresis (CE) microchips were modified by a dynamic coating method that provided stable electroosmotic flow (EOF) with respect to pH. The separation channel was coated with a polymer bilayer consisting of a cationic layer of Polybrene (PB) and an anionic layer of dextran sulfate (DS). According to the difference in charge, PB- and PB/ DS-coated channels supported EOF in different directions; however, both methods of channel coating exhibited a pH-independent EOF in the pH range of 5-10 due to chemical control of the effective zeta-potential. The endurance of the PB-coated layer was determined to be 50 runs at pH 3.0, while PB/DS-coated chips had a stable EOF for more than 100 runs. The effect of substrate composition and chip-sealing methodology was also evaluated. All tested chips showed the same EOF on the PB/DS-coated channels, as compared to uncoated chips, which varied significantly. No significant variation for separation and electrochemical detection of dopamine and hydroquinone between coated and uncoated channels was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of electroosmotic flow for a polydimethylsiloxane electrophoresis microchip via polyelectrolyte coating.

Polydimethylsiloxane has been dominantly employed as the substrate material for microchip capillary electrophoresis. The poor surface chemistry, however, generates inconsistent electroosmotic flow under the electrophoretic condition, limiting its broader applications. In this work, different polyelectrolytes, including polydiallyldimethylammonium chloride, polyvinyl sulfate, and dextran sulfa...

متن کامل

Towards a microchip-based chromatographic platform. Part 2: sol-gel phases modified with polyelectrolyte multilayers for capillary electrochromatography.

The potential for using polyelectrolyte multilayers (PEMs) to provide chromatographic functionality on continuous silica networks created from sol-gel chemistry has been evaluated by capillary electrochromatography (CEC). Construction of the PEM was achieved by flushing the column with polyelectrolytes of alternative charge, with variation of the properties of the exposed polyelectrolyte provid...

متن کامل

Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA.

Physically adsorbed (dynamic) polymeric wall coatings for microchannel electrophoresis have distinct advantages over covalently linked coatings. In order to determine the critical factors that control the formation of dynamic wall coatings, we have created a set of model polymers and copolymers based on N,N-dimethylacrylamide (DMA) and N,N-diethylacrylamide (DEA), and studied their adsorption b...

متن کامل

Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis.

Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electr...

متن کامل

Influence of polymer structure on electroosmotic flow and separation efficiency in successive multiple ionic layer coatings for microchip electrophoresis.

The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 72 24  شماره 

صفحات  -

تاریخ انتشار 2000